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Solutions are obtained in self-similar variables for the equations of gas motion 
in a porous medium with a two-term drag law for polytropic and adiabatic gas fil- 
tration. 

An investigation of the self-similar solutions of one-dimensional gas-filtration prob- 
lems was performed in [1-7]. An analytic solution is obtained in [i] for the problem of 
plane isothermal gas flow with a linear dependence of the pressure gradient on the velocity. 
Gas filtration equations with linear and quadratic drag laws and their asymptotic solutions 
are represented in self-similar variables in [5, 6]. The numerical solution of the self- 
similar problem of plane isothermal gas filtration with a two-term Darcy law is represented 
in [7]. 

Let us consider one-dimensional gas motion in a homogeneous porous medium for a power- 
law dependence of the gas mass flow rate on the time at the origin. 

Polytropic gas filtration with a two-term drag law is described by the following sys- 
tem of equations: 
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We write the initial and boundary conditions for the system (1)-(3) in the form 

p (x, t = 0), lira (x~p) = At z. 
X~O 

For I = ~(i + n)(n + 2) -I the system (1)-(3) with the conditions (4) describes self-similar 

motions. 

The gas filtration density and velocity in a porous medium are represented in the di- 
mensionless variables: 
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In self-similar variables, (1)-(3)and conditions (4) have the form 
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Fig. i. Gas pressure f(e) (solid 
curves) and gas filtration rate 
~(8) (dashes) in plane isothermal 
flow for ~ = 0; i; 50 (curves 1-3, 
f(0); 4-6,~ (~)). The dash-dot 
curve denotes the asymptotic curve 

= 2e for the velocity of gas 
motion for a quadratic drag law 
(o : o ) .  

1 d(O~d) df 
o - - T  - + f - ( n + l ) ~  =0,  (8) O v dO 

?_ ,  d_j__f + o~ + f~  = o, (9 )  
dO 

f (O ~ ~ )  = 0, l i ra  (O~qDf) = 1. 0~0 
The a in (9) is determined from the formula 

( i 0 )  

v(l+n) 2+n(1-Fv) n~-2 (~ ~ (/1 ~ 2)(n--l)(l ,z-v)-~3 (+)(n--l)(l-k-v)q-3 
--  - -  A (n-1)d+v)+a 
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We o b t a i n  f r o m  (9)  t h a t  d f / d e  < 0;  c o n s e q u e n t l y ,  d(OVq)f)/dO<O f o l l o w s  f r o m  (8)  and t h e  
product of the functions f(0)~(0) decreases to zero as e grows. Therefore, a coordinate e* 
is found such that f(e)~(0)<<~ for r > e*. Here (9) goes over into the linear Darcy law: 

F_I d j_f + ~ = 0. (ll) 
dO 

It is shown in [2] that the gas filtration that is described by (8), (Ii), and the conditions 
(i0) occurs at a finite rate for n ~ 0. 

Let eo be the self-similar coordinate of the gas front, then 

q~(Oo) = (n + 1)0 o. (12)  

Integrating (ii), we obtain that the gas pressure near the front is described by the expres- 
sion 

[ (0) ~ [(rn (n ,-/- 1) Oo (0 -- 00)] I In. (13)  

Let us examine the numerical solution of the plane isothermal gas-filtration problem 
in a porous medium ~ = 0, h = i. 

The system (8), (9) with conditions (i0) was integrated numerically by using the Runge-- 
Kutta method for the fourth-order approximation [8]. The numerical solution of the problem 
was by the method of "adjustment." For e = 0 an arbitrary value of the velocity ~(6~--0)---~0 
>0 was given, and f(e = 0) = fo was found from (10). Moreover, (8) and (9) are inte- 
grated until ~ = 2Co is satisfied in conformity with (12). If f(eo) # 0 here, then the value 
of ~0 is increased and thecomputation is repeated. For an abrupt rise in ~(e), in substance 
~(0)-+oo, the computation ceases, the initial value of ~0 is diminished and the integration 
is repeated. Therefore, each iteration narrows the interval to determine ~(0 =0) by half, 
which permits obtaining numerical solutions for f(8) and ~(0) to the necessary accuracy. 
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Fig. 2. Gas filtration rate in an adiabatic flow for ~ = 0.02; 
i; 50 (curves 1-3). The dashed curve portrays the function ~=20. 

Fig. 3. The gas pressure f(8) (solid curves) and density g(O) 
(dashed and dash-dot curves) in adiabatic filtration for ~ = 
0.02; i; 50 (curves 1-3 are f(8) and curves 4-6 are g(8)). 

Results of a numerical solution of the problem (8), (9) are shown in Fig. 1 for ~ = 0 
and n = I. 

From the formula for o, we obtain o = v(XA) -t for ~ = 0 and n = I. The parameter I is 
related to the characteristic pore dimension ~ and the porosity e by the expression [9]: 
I = 0.0128 (i -- e) -I, consequently o = 8.5D(I -- e)(A~) -t. For instance, for gas filtration 
through sand (6 = 10 -4 m, V = 0.25"10 -4 N'sec/m 2, e = 0.i) we obtain o ~ 20A-*. Conse- 
quently, for A ~ 20 kg/m2.sec the gas filtration is described by a linear Darcy law, and 
for A ~ 20 kg/ma.sec by two-term and quadratic drag laws. 

Let us consider self-similar adiabatic gas motions for a two-term drag law, which are 
described by the system (1)-(2), the energy equation, and the equation of state: 

o (pE) ~ a (pull) = o, 
at Ox 

E = coT, H = c,T, P = RpT. 

We used boundary and initial conditions in the form 

P (x = 0, l) --- At q, lira (up) : B, 
x~0  

P(x, t : 0 ) = P o ,  P(x, t = 0 ) : 0 .  

for plane gas motion in a semiinfinite porous medium. 

The problem (i)-(2), (14)-(17) is also self-similar with the variable 8 = x(IB)*/2. 
_q+__i 

(2Ak)-I/2 I 2 The pressure, density, and velocity for gas filtration are expressed in 
terms of dimensionless functions of e: 

(14) 

(15) 

(16) 

(17) 

P (x, t) : Atqf (0), 
q--1 

< 2 E B  
p (x, t) = B ~ t g (o), ( 1 8 )  

q--1 

u (x, t ) =  - -  V ~ 
Ak -7-  t ,~(o). 

Here f (O) ,  g(O), and ~(8)  s a t i s f y  equa t ions  and c o n d i t i o n s  cor responding  to the  problem (1) -  
(2) ,  ( 14 ) - (17 ) :  

g' [q) - -  (1 + q) 0] + g [q~' + 1 - -  q] = 0, (19) 

[' + o~o + g @  : O, ( 2 0 )  
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~'~f + f' [ ~  - -  0 - -  q0] + 2qf = 0, 

~(0 = O) = 1; lira (g~) : 1, 
o~0 

(21)  

(22)  

g ( 0 - ~  oo)=  o, f (0 -~  oo) = N :  Po 
A 

L e t  u s  a n a l y z e  t h e  b e h a v i o r  o f  t h e  f u n c t i o n s  f ( e ) ,  g ( 8 ) ,  and ~ ( 0 )  f r o m  t h e  s y s t e m  ( 1 9 ) -  
(21)  f o r  q = 0 and c o n d i t i o n s  ( 2 2 ) .  S i n c e  f '  < 0 ,  t h e n  i t  i s  s e e n  f r o m  (21)  t h a t  f o r  
7 ~ - - 0 > 0  t h e  f i l t r a t i o n  r a t e  i n c r e a s e s  a s  6 g r o w s :  ~ ' > 0 .  H e r e  g '  < 0 and ( ~ g ) ' < 0 ,  w h i l e  

t h e  p r o d u c t  ~ ( 0 ) g ( 0 )  d i m i n i s h e s .  

The v e l o c i t y  o f  g a s  m o t i o n  9(0) h a s  a maximum v a l u e  a t  t h e  f r o n t  e q u a l  t o  ~(0 = 0 0 ) =  00 
f o r  0 = Co. I t  f o l l o w s  f r o m  (19)  t h a t  f o r  ~----00 g ' - ~ - - o o .  The ga s  p r e s s u r e  i n  a p o r o u s  me-  
d ium f(e) is determined for 0 < 0o near the front from the formula 

f(0) = N 4- a0o (00 - -  0). (23)  

The g a s  f i l t r a t i o n  v e l o c i t y  9(0) and d e n s i t y  g ( e )  a r e  e x p r e s s e d  h e r e  i n  t h e  f o r m  

(0) = 00 o01 (? - -  1) (00 - -  0), (24)  
7N 

m 

g (0) = C o (00 -- 0) l+m , (25)  

w h e r e  Co i s  a c o n s t a n t  and m = [ ~ 0 o ( y -  1 ) ] / y N .  

It is seen from (23) that the gas pressure equals N at the front for e = eo while the 
derivative f' undergoes a jump and gas motion in the porous medium occurs at a finite veloc- 
ity. For 8 = eo the gas density g(~) vanishes, which corresponds to conditions (22). 

The following algorithm is used to solve the problem (19)-(22). For e = 0 values of the 
gas pressure f(6 = 0) = i, the gas velocity ~(0~0)=90, and the density g(0=0)=~ol are 
given, where ~0 is an arbitrary value. Later by using the fourth-order approximation of the 
Runge--Kutta method [8], the system (19)-(22) is integrated until the value of ~ equals Co. 
If 9 rises abruptly as 8 increases, then the computation ceases, and thevalue of ~0 dimin- 
ishes; then the system of equations is again integrated. For ~(0=00)=00 the values f(6= Co) 
and N are compared. If equality holds, then the integral curves for f(e). ~(0) and g(8) are 
determined. In case f(0 = 00) < N the value of the initial velocity is increased and the 
computation is repeated. For f(e = 80) > N the value of the initial velocity is diminished 
and integration is again performed. 

The dependence of the motion velocity ~(0) for different o is shown in Fig. 2 and the 
pressure f(8) for the same o is displayed in Fig. 3. It is seen that the front coordinate 
80 equals greater values for large ~. 

A self-similar solution of the gas filtration problem is presented in [3] for a linear 
Darcy law if the gas pressure at the entrance to the porous medium varies exponentially with 

time. 

A self-similar solution also exists for adiabatic gas filtration with a two-term drag 
law if 

P (0, t) = P0 exp {st}. (26)  

and motion velocity are represented in terms of dimensionless The gas pressure, density, 
variables in the form 

where the self-similar 

P (x, t) = P0 exp {~} f (0), 

9 (x, t) : B ~ 2Bk g (0), 

v a r i a b l e  i s  0 = xcaC~Bk/2kPo exp { - - a t / 2 } .  

(27) 
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The equations in self-similar variables follow from (I), (2), (14)-(15): 

(~g) '  + g + Og' = O, (28)  

f '  + G~ § g~* = O, (29)  

( f~) '  + 2f - -  of' = 0 (30)  

Since P(0, t) = Po exp {at} and lim(pu) = B, then 
x~0 

f (0  = I)= 1, l i m ( ~ g ) =  1. (31)  
0~0 

There follows from the initial condition P(x, t + -- ~) = 0 that 

f ( 0 - +  o o ) =  0. (32) 

The s y s t e m  ( 2 8 ) - ( 3 0 )  w i t h  t h e  c o n d i t i o n s  (31)  and  (32)  i s  s o l v e d  e x a c t l y  t h e  same a s  t h e  
p r o b l e m  ( 1 9 ) - ( 2 2 ) .  

For x = 0 let the gas pressure vary according to the law 

P (x = O, t) = Po § P1 exp {~t}. (33)  

For Po = P/k[(~a)/k2] -~/3 and P(x, t +-- ~) = Po there exists an analytic solution of the 
system (i)-(3) s n = i. The gas filtration pressure and velocity are represented in the 
form 

P (x, t) = Pd(O) ,  

u (x, 0 = ~(o) ,  (34)  

where 

0 = exp x - -  at  . 

The system of equations to determine f(0) and ~(0) has the form 

( f ~ ) ' - - f '  = O, (35)  

r + atp + hp ~ =  o. 

Integrating (35) with the initial and boundary conditions taken into account, we obtain 

[ (ak~)I/3P1] (36)  
f ( O ) = o  1 + ~0 ' 

q~(B)----- 1 q- (ek%~)l/ap 1 . 

The solutions presented above for gas filtration problems in a porous medium for a two- 
term drag law can be utilized to analyze the gas pressure, density, and motion velocity de- 
pendences. 

NOTATION 

r porosity of the medium; p(x, t), gas density; t, time; x, coordinatep u, gas filtra- 
tion velocity; ~, dimensionality parameter of the problem; p, gas viscosity; k, permeability 
of the medium; ~, Forheimer coefficient; n, polytropic index; Q, constant in the polytropy 
equation; A, constant in the boundary conditions; l, exponent; f, dimensionless pressure; 
9, dimensionless filtration rate; 0, self-similar variable; o, constant in the equations; 
0o, front self-similar coordinate; 90, value of 9 for @ = 0; fo, value of f for e = 0; E, 
gas internal energy per unit mass; ~, characteristic dimension of the pores; Cv, gas specific 
heat for constant volume; c~ gas specific heat for constant pressure; R, gas constant; q, ex- 
ponent in the boundary condltions; B, constant in the boundary conditions; Po, initial pres- 
sure; g, self-similar gas density; y, ratio of the gas specific heats; N, constant in the 
boundary conditions; Co, constant; a, constant in the boundary conditions; Px, pressure at 
the boundary; H, enthalpy. 
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ANALYSIS OF ELASTIC WAVE DYNAMICS IN WALLS OF A SPHERICAL 

EXPLOSION CHAMBER 

A. I. Marchenko and G. S. Romanov UDC 533 + 539 

The wave motion is investigated numerically, and the magnitude of the elastic 
stresses is estimated in the walls of a spherical explosion chamber. 

The theoretical computational model of gasdynamic and mechanical processes proceeding 
in a spherical explosion chamber was examined in detail in [i]. The proposed model permitted 
computation of the wave motion parameters within the chamber and estimation of the fraction 
of energy transmitted to its walls. A detailed comparison between the numerical results ob- 
tained and certain experimental--computational data [2] showed good agreement. The investi- 
gation executed in [i] permitted the conclusion that the model assures a more rigorous analy- 
sis of the phenomena under consideration as compared with the assumptions often used in the 
literature about the constancy of the pressure on the chamber walls or the possibility of 
approximating it by the simplest analytic dependences [3, 4]. 

The present investigation supplements [i] in the numerical study of the dynamics of 
elastic waves being generated in chamber walls subjected to periodic pulsed impacting loads 
for the case of finitely or infinitely thick walls, which is of interest for the solution of 
a broad class of practical problems [2-5]. 

Within the framework of the model proposed in [i], wave processes in the walls of a 
spherical explosion chamber of radius ~2 mfilled with air of the density Po = 1.293"i O-s 
g/cm 3 at a pressure Po = 1 arm at whose center is an energy-liberating source of 3 cm radius 
and Eo = 7.106"109 J energy are considered in this paper. Aluminum (Pl = 2.7 g/cm ~) was 
selected as chamber wall material. 
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